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Abstract. We compute the influence of an external magnetic field on the Casimir energy of a
massive charged scalar field confined between two parallel infinite plates. For this case the obtained
result shows that the magnetic field inhibits the Casimir effect.

The Casimir effect can be generally defined as the effect of a non-trivial space topology on
the vacuum fluctuations of relativistic quantum fields [1–4]. The corresponding change in the
vacuum fluctuations appears as a shift in the vacuum energy and an associated vacuum pressure.
This shift is known as the Casimir energy of the field due to the given space constraints. The
original Casimir effect [5] is the attraction of two neutral perfectly conducting parallel plates
placed in vacuum. The boundary conditions imposed by the metallic plates confine the vacuum
fluctuations of the quantum electromagnetic field in the space between the plates. The effect
of the boundary conditions can be viewed as a departure from the trivial topology ofR3 to the
topology ofR2 × [0, a], wherea is the distance between the plates. The resulting shift in the
vacuum energy of the quantum electromagnetic field was computed by Casimir and is given
by [5]:

Eγ (a) = −`2 π2

720a3
(1)

where`2 is the area of each plate and the close spacing between them is implemented by the
conditiona � `. The pressure corresponding to (1) was first measured by Sparnaay in 1958 [6]
and more recently with high accuracy by Lamoreaux [7] and by Mohideen and Roy [8].

The Casimir energy has become an important ingredient of any theory with nontrivial
vacuum and has been computed for fields other than the electromagnetic one with several types
of boundary condition [1–4]. In the case of an electrically charged quantum field it poses by
itself the question of how the charged fluctuations, and therefore the Casimir effect, are affected
by fields coupling to the fluctuations through this charge. This question is strongly motivated
by the fact that in a more complete picture of the Casimir effect the charged fluctuations of the
constrained vacuum are, or may be put, under the influence of other fields. Within a hadron,
for example, the vacuum fluctuations of quark fields are affected by the electromagnetic field
of the quarks and by the colour field of gluons and quarks. Also, the vacuum fluctuations of
gluon fields are affected by the colour field of quarks and gluons. In this example of quarks and
gluons the unavoidable influence of the fields on the constrained charged fluctuations is of a
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extreme complexity. A reasonable realistic model for confined quarks and gluons would require
fermions and bosons to be confined by boundary conditions on a sphere. The first complete
calculation of the Casimir energy for the spherical geometry has been recently performed for a
massive scalar field [9] and has also been extended to a massive fermionic field [10]. However,
the problem for spherical geometry and an external field is certainly one of incredible difficulty.
As a first step to the understanding of how charged fermionic and bosonic constrained vacuum
fluctuations are affected by fields coupling to this charge we consider the problem in its most
simple form, to wit: vacuum fluctuations of Dirac or scalar electrically charged fields under
the influence of an external constant uniform magnetic field and constrained by the simplest of
the possible boundary conditions. In the case of a constrained Dirac vacuum the external field
enhances the Casimir energy [11]. Here we consider a complex scalar field confined between
two infinite plates with a constant uniform magnetic field in a direction perpendicular to the
plates. The charged scalar field allows us to ignore kinematical complexities which are not
relevant to an initial approach to this problem. The choice of a pure magnetic field excludes the
possibility of pair creation for any field strength. The confinement between infinite plates is
described by a simple form of Dirichlet boundary condition and the direction of the magnetic
field perpendicular to the plates is obviously a simplifying choice. Under such assumptions the
formalism may be kept simple in order for us to concentrate on the fundamental issue, which
is the physical effect of the external field on the Casimir effect. Once the main feature of such
influence is determined the path is open to consider more complicated geometries and external
fields as well as other quantum vacua. Note that we consider a problem in which the charged
quantum vacuum is constrained by the boundary conditions and the external electromagnetic
field is not. Therefore the influence of the external field on the charged vacuum already appears
at the one-loop level, at which our calculations will be performed. In contrast, we have in the
Scharnhorst effect [12–16] that boundary conditions on a pair of parallel plates are imposed on
the electromagnetic quantum vacuum but not on the charged vacuum of electrons and positrons.
As a result there is a change in the velocity of propagation of an external electromagnetic wave
in the region between the plates. The Scharnhorst effect involves two-loop diagrams because
the coupling between the external field and the quantum electromagnetic field requires the
intermediation of a charged fermion loop.

Let us calculate the Casimir energy of the charged scalar field in a constant applied
magnetic field using a method introduced by Schwinger to obtain the Casimir energy [17]
from the proper-time representation of the effective action [18]. Since the method has been
clearly explained by Schwinger [17] and already applied to several situations [19] we may use
it here without going into too much detail. We start with Schwinger’s proper-time formula for
the effective action [18]:

W = − i

2

∫ ∞
s0

ds

s
Tr e−isH (2)

wheres0 is a cut-off in the proper-times, Tr means the total trace andH is the proper-time
Hamiltonian, which is given by(p − eA)2 + m2, wherepµ = −i∂µ, e is the charge of the
scalar field,A is the electromagnetic potential andm is the mass of the scalar field. The
boundary condition gives for the component of the momentum which is perpendicular to the
plates the eigenvaluesnπ/a,wheren is a positive integer. The other spatial components of
the momentum are constrained into the Landau levels created by the magnetic fieldB and we
choose the direction ofB in such a way thateB is positive. The trace in (2) is given by:

Tr e−isH = 2e−ism2
∞∑
n′=0

`2eB

2π
e−iseB(2n′+1)

∞∑
n=1

e−is(nπ/a)2
∫

dt dω

2π
eisω2

(3)
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where the factor two is due to the two degrees of freedom in the complex field; the first sum
is over the Landau levels with the corresponding multiplicity factor due to degeneracy; the
second sum is over the eigenvalues stemming from the Dirichlet boundary conditions and the
integral range is given by the measurement timeT and by the continuum of eigenvaluesω of
the operatorp0. Following Schwinger’s regularization prescription [17] we apply the Poisson
sum formula [20] to the second sum in order to obtain:

∞∑
n=1

e−is(nπ/a)2 = a√
iπs

∞∑
n=1

ei(an)2/s +
a

2
√

iπs
− 1

2
. (4)

The sum over the Landau levels is straightforward and leads to:
∞∑
n′=0

eB`2

2π
e−iseB(2n′+1) = eB`2

4π
cosech(iseB). (5)

Using (4) and (5) into (3), we obtain for the trace:

Tr e−isH = a`2T

4π2

e−ism2

is2
[1 + iseBM(iseB)]

[
1

2
+

√
iπs

2a
+
∞∑
n=1

ei(an)2/s

]
(6)

whereM is the function defined by:

M(ξ) = cosechξ − ξ−1. (7)

Substituting now equation (6) into equation (2) we get the effective action:

W = −2σ(B)`2T + L(1)(B)T a`2 − E(a, B)T (8)

where on the right-hand side the first term is totally independent ona and is of no concern to
us here, the second term gives the (unrenormalized) effective Lagrangian:

L(1)(B) = − 1

16π2

∫
s0

∞ ds

s3
e−ism2

(iseB) cosech(iseB) (9)

and the third term gives the (still cut-off-dependent) Casimir energy:

E(a, B) = a`2

8π2

∞∑
n=1

∫
s0

∞ ds

s3
e−ism2+i(an)2/s [1 + iseBM(iseB)] (10)

which is the quantity we are interested in. The effective LagrangianL(1)(B) is analogous to the
Euler–Heisenberg Lagrangian for the fermionic case [21] and was first obtained by Schwinger
in 1951 [18]. Since it does not depend ona it makes no contribution to the Casimir energy.
Usually, spurious terms must be subtracted before eliminating the cut-offso in (10) but in the
present calculation they were all left in the terms of (8) which do not contribute to the Casimir
energy. So we may simply takeso = 0 in (10). Continuing with Schwinger’s method we now
use Cauchy theorem to make aπ/2 clockwise rotation of the integrations-axis, which results
in a substitution ofs by−is in the integrand of (10). Part of this integrand can be expressed
in terms of the modified Bessel functionK2 (cf formula 3471.9 in [22]) and (10) reduces to:

E(a, B)
`2

= − (am)
2

4π2a3

∑
n∈N

1

n2
K2(2amn)− 1

8π2a3

∞∑
n=1

∫
0

∞ ds

s3
e−s(am)

2−n2/sseBa2M(seBa2).

(11)

The first term on the right-hand side of this equation is the usual Casimir energy in the absence
of the external magnetic field:

E(a, 0)
a`2

= − (am)
2

4π2a4

∞∑
n=1

1

n2
K2(2amn) (12)
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which is a result already known in current literature [1–4]; in the limitm → 0 this result
reduces to (1) (because the complex scalar field has two degrees of freedon and the photon
field two polarizations). Here we are interested in the second term on the right-hand side of
equation (11):

1E(a, B)
`2

= − 1

8π2a3

∞∑
n=1

∫
0

∞ ds

s3
e−s(am)

2−n2/sseBa2M(seBa2) (13)

which measures the influence of the external magnetic field in the Casimir energy. Due to the
simple behaviour of the functionM defined in (7) we can determine the main features of this
influence. The function−ξM(ξ) increases monotonically from 0 to the asymptotic value 1
whenξ goes from 0 to∞. Therefore we see that the external magnetic field always inhibits
the Casimir energy of the scalar field and suppresses it completely in the limitB →∞. This
is the result that answers the question raised above. This result should be contrasted with
the result for a Dirac field for which the Casimir energy is always enhanced by the external
magnetic field [11]. It is very interesting that fermionic and bosonic charged vacua present
such clear and opposite behaviours in the presence of an external magnetic field. We have
found no intuitive explanation for this, but it is quite possibly related to the paramagnetic and
diamagnetic characters of fermionic and bosonic vacua, respectively. Whatever the reason, it
is important to consider this opposite behaviour of bosonic and fermionic vacua in the presence
of an external field, because these vacua actually exist together in the presence of fields and
may also be constrained by boundary conditions, as remarked above. Note, for example, that
the shift in the zero-point energy caused by the external field depends on the mass of the field
in the bosonic case (13) as well as in the fermionic case [11], and that therefore a cancellation
of zero-point energies of those vacua depends on the specific relations between the masses of
the quantum fields.

It is also instructive to define

mB =
√
m2 + eB (14)

and write the complete Casimir energy (11) as:

E(a, B)
`2

= − 1

8π2a3

∞∑
n=1

∫
0

∞
ds s−3e−s(amB)

2−n2/s 2seBa2

1− e−2seBa2 . (15)

Comparing this expression with its limit whenB → 0 we may say that the effect of the external
magnetic field on the usual Casimir energy is given in the integrand of (15) by theB-dependent
fraction and the constantmB which appears in the exponential. WhenB → 0 the fraction
tends to 1 andmB → m. For a strong magnetic field the exponential is the dominant factor in
the integrand and the effect of the magnetic field on the Casimir energy appears roughly as the
substitution ofm by mB ; certainly theB-dependent fraction may still in this case affect the
precise influence of the magnetic field on the Casimir energy.

Let us consider the strong field regime, in which changes in the charged vacuum should
be more prominent. The integral in equation (11) is dominated by the exponential function
whose maximum is e−2amn and occurs atσ = am/n. Due to this feature we are justified
in substituting the functionM(ξ) by 2e−ξ − ξ−1 if B >> (φ0/a

2)(a/λc), whereφ0 is the
fundamental flux 1/e andλc is the Compton wavelength 1/m. Therefore, in the strong field
regime, the second term in (11) can also be expressed in terms of a modified Bessel function
(formula 3471.9 in [22]), and the Casimir energy can be written as:

E(a, B)
`2

= − eBa
2

2π2a3

√
(am)2 + eBa2

∑
n∈N

1

n
K1(2n

√
(am)2 + eBa2). (16)
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Notice that the sign in the square root is to be expected because, in the regime we are working
with, a minus sign means energy creation or anihilation which cannot happen when we are
dealing with a constant and uniform magnetic field. We can also use (14) to rewrite (16) in the
following form:

E(a, B)
`2

= −eBa2 amB

2π2a3

∞∑
n=1

1

n
K1(2amBn) (17)

which is in a more appropriate form to compare with (12). By further stressing the strong
field regime we can take the asymptotic limit ofK1 (cf 8446 in [22]) in (17) withmB ≈ eB to
obtain:

E(a, B)
`2

= (eBa2)5/4

a3
e−2
√
eBa2

. (18)

Turning now our attention to the weak field regime,B � (φ0/a
2)(a/λc), we can substitute

in the integrand of (13)ξM(ξ) by−ξ2/6 to obtain:

1E(a, B)
`2

= − (eBa
2)2

24π2a3

∞∑
n=1

K0(2amn). (19)

Summarizing the results, we have in equation (11) the exact expression for the influence of
the external magnetic field on the Casimir energy of a scalar charged field. Equations (16)
and (19) particularize the result of equation (11) to the regimes of strong and weak magnetic
field, respectively. In either case, the external field inhibits the Casimir energy of the scalar
field. This is in contrast to the case of a Dirac field, whose Casimir energy is enhanced by
the external magnetic field [11]. We may also look at the interplay between constraints and
external field on the quantum vacuum from a completely different point of view. Instead of
asking what is the influence of the magnetic field on the Casimir energy of the constrained
vacuum we can ask what is the effect that constraints on the vacuum have on the effective
Lagrangian for the magnetic field. This study has already been performed for the fermionic
vacuum [23] and will in the near future be presented also for the bosonic vacuum. It would
also be interesting to investigate the effect of an external magnetic field on the bosonic vacuum
of a scalar field with space-time symmetry given by theκ-deformed Poincaré algebra [24]
in order to see the relation between the inhibiting effect of the magnetic field on the Casimir
energy and the mechanism of creation of field excitations due to the deformation.
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